The zeta function of $M_{3} \times \mathbb{Z}^{2}$ counting ideals

1 Presentation

$M_{3} \times \mathbb{Z}^{2}$ has presentation

$$
\left\langle z, x_{1}, x_{2}, a_{1}, a_{2}, x_{3} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3}\right\rangle
$$

$M_{3} \times \mathbb{Z}^{2}$ has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{M_{3} \times \mathbb{Z}^{2}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(3 s-4) \zeta_{p}(4 s-4) \zeta_{p}(5 s-5) \\
& \times \zeta_{p}(5 s-4)^{-1}
\end{aligned}
$$

$\zeta_{M_{3} \times \mathbb{Z}^{2}}^{\triangleleft}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{M_{3} \times \mathbb{Z}^{2}, p}^{\triangleleft}(s)\right|_{p \rightarrow p^{-1}}=p^{15-11 s} \zeta_{M_{3} \times \mathbb{Z}^{2}, p}^{\triangleleft}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{M_{3} \times \mathbb{Z}^{2}}^{\triangleleft}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

This zeta function is its own ghost.

6 Natural boundary

$\zeta_{M_{3} \times \mathbb{Z}^{2}}^{\triangleleft}(s)$ has meromorphic continuation to the whole of \mathbb{C}.

